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Abstract—As the Cloud is becoming more ubiquitous and less
expensive to utilize, a new class of denial of service attacks is
emerging. These attacks employ the Cloud to launch denial of
service attacks against a target outside the Cloud. Slow-read
denial of service can be one of those attacks. It is a new type of
application-layer denial of service attacks that exploits vulnerabil-
ities in the HTTP protocol in order to make services inaccessible
for legitimate users on a target machine. This attack is difficult to
detect by conventional intrusion detection systems, as it generates
legitimate and complete packets in all networking layers and in a
slow rate. The attack exhausts the target’s resources such as Web
server connection pool and generally needs much less bandwidth
compared to traditional volumetric attacks. The Cloud is an ideal
platform to launch slow-read attack, since virtual machines on the
Cloud can be easily exploited as a botnet for the purpose of this
attack. We show how this new phenomenon, CloudZombie, can
happen by remotely launching slow-read attacks from the Cloud.
We also present a new approach to detect slow-read attacks. Our
method uses Random Forests to build classifiers based on which
the incoming slow-read traffic can be detected at the destination.
High performance and low error rates of our approach indicate
its efficiency to detect the attack.

Keywords—Denial of Service, Slow Read, Cloud, Random
Forests.

I. INTRODUCTION

Cloud is becoming more ubiquitous and also less expensive
to utilize. Currently, almost all major companies in IT industry
offer some type of Cloud services to their clients. There are,
however, many security threats against the Cloud including
distributed denial of service (DDoS) attacks [1]. In this work,
we are interested in the opposite scenario; the potential threat
that the Cloud brings against non-Cloud targets.

Being one of the oldest and most effective attacks on the
Internet, a denial of service attack aims to make a victim’s
computing resources inaccessible to its legitimate users. Tradi-
tional denial of service attacks use flooding techniques to send
a huge number of malicious requests to the victim machine
[2]. Since processing, memory, networking and other hardware
power and capacity is limited on any single machine, the target
may finally become unable to serve the legitimate requests.

Application-layer denial of service attacks (ADDoS) target
vulnerabilities in application-layer protocols such as HTTP in
order to exhaust server resources (socket, CPU, memory, etc.).
Unlike traditional DDoS attacks that send flooding network-
or transport-layer packets towards the victim machine and
may be easily detected, ADDoS attacks exploit vulnerabilities

in application-layer protocols and require fewer number of
connections. In general, there are three major differences
between application-layer (layer 7) and infrastructure-layer
(layers 3 and 4) DDoS attacks. First, application-layer attacks
require much less resources on the attacker side in terms of the
number of bots and bandwidth, because they normally exploit
vulnerabilities. Second, they are more difficult to detect, since
they establish legitimate TCP and UDP connections. Finally,
more hardware power on the target may not prevent these
attacks, because they target the application’s limitations rather
than the host’s computing or networking limitations.

Slow-read attack is a new type of ADDoS attacks that
reads the HTTP responses slowly; hence slow-read. This
attack exhausts server resources such as connection pool. Most
modern Web servers close a connection when there is no
data transmission between the client and the server. However,
if there is a flow of data, even minimal, most likely the
connection will be kept open and this is exploited by this
attack. Due to the nature of this attack, it does not require
a botnet with tens of thousands of compromised machines. An
attacker does not need huge bandwidth either. These would
make this attack easier to launch and harder to detect as
opposed to volumetric attacks that require tremendous amount
of resources on the attacker side.

In this paper, we show how virtual machines on the Cloud
can be exploited to launch successful slow-read denial of
service attacks against a powerful target server outside the
Cloud. We discuss CloudZombie as a new phenomenon to
remotely launch denial of service attacks “from” the Cloud.
This is different from many other work that discuss denial
of service “against” the Cloud. In other words, the Cloud is
the source of the attack in our work as opposed to being the
target. The slow-read attack is generally able to make the target
defunct within a few seconds. We then propose a novel solution
based on models generated using random forests to detect such
attacks. We show that our classifiers have high accuracy and
low false positive and negative rates.

The rest of the paper is organized as follows. Section II
explains the slow-read attack in detail. Section III discusses the
related work and how our work is different. Section IV presents
experiments showing how the slow-read can be launched from
the Cloud. Section V discusses how to detect the slow-read
attack using our proposed solution. Section VI presents and
discusses the experimental results, and finally Section VII
provides a summary of this work and its limitations.
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http://www.example.com/image.png

GET /image.png HTTP/1.1
Host: www.example.com
User-Agent: Mozilla/5.0
Accept: text/html,application/
xhtml+xml,application/xml
Accept-Language: en-US,en;q=0.5

HTTP/1.1 200 OK
Date: Wed, 25 Mar 2015 15:48:40
Server: Apache/2.2.22 (Ubuntu)
Last-Modified: Tue, 10 Feb 2015 
18:32:00 GMT
Accept-Ranges: bytes
Content-Length: 8890
Content-Type: image/png

HTTP Request HTTP Response

Fig. 1. HTTP request for a file (image.png) on a server (www.example.com)
and the successful (Ok) HTTP response from the server.
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Fig. 2. Slow-read attack launched from a single source. A single HTTP
request is shown.
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Fig. 3. High Level Classification of Application-layer DDoS (ADDoS)
Attacks.

II. SLOW-READ DENIAL OF SERVICE ATTACKS

Slow-read is a new ADDoS attack invented by Sergey
Shekyan [3]. To understand how the slow-read attack works,
we first need to see how a normal HTTP connection works.
Figure 1 shows a simplified HTTP request and response for
a resource called image.png on a server with the address of
www.example.com. In a normal scenario, the client sends an
HTTP request for a resource on the server, image.png here. If
the address is correct and the file is accessible, the server re-
sponds by a 200 Ok message and sends the requested resource.
The HTTP protocol by design requires each connection to be
completed in order to release its connection resources [4]. This
requirement can be exploited by slow-rate DoS attacks to keep
the server busy by sending complete requests to, but reading
responses slowly from the server.

Figure 2 shows how slow-read works in a single malicious

request. After the three-way handshake between the attacker
and the target server, a TCP connection is established and each
party is ready to send data to the other end. During the hand-
shake, each party can advertise different TCP header values
such as window size, window scaling, etc. By advertising a
small window and requesting a large resource, the attacker
forces the server to send data slowly. This figure shows the
scenario for a single slow-read request initiated from a single
machine. However, in a real case scenario, tens of thousands
of such requests will be sent toward the target concurrently
from different machines.

Figure 3 shows the position of the slow-read attack in
a high level classification of ADDoS attacks. As the figure
shows, DDoS attacks can be classified into Infrastructure-
layer DDoS (IDDoS) and ADDoS attacks. ADDoS can be
further classified into two types based on their behavior. Ba-
sically, an application-layer attack may exploit vulnerabilities
in the application-layer protocols or applications, or exhaust
resources on the victim machine [5]. Slow GET, Slow POST,
and slow-read attacks all exploit vulnerabilities in the HTTP
protocol. These attacks exploit the trustfulness of the HTTP
protocol to the incoming connections. In other words, they
exploit the fact that a Web server waits for the incoming
connection to complete sending and receiving all the data
which is required by the HTTP protocol by design.

The other class of ADDoS attacks only exhaust resources
on the target. HTTP flooding attacks belong to this class.
These attacks use different techniques and send flooding HTTP
requests towards the victim. The attacker basically only needs
to know the IP address of the victim and may requests random
URLs based on that. There is no need to request a valid
Web page or resource on the target server, since the attacker
normally do not want to receive any responses and only aims
to overwhelm the resources on the victim machine. These
ADDoS attacks resemble flooding infrastructure-layer attacks,
but send HTTP rather than TCP or UDP packets.

It should be noted that the first class of ADDoS attacks
which exploit vulnerabilities, also apply flooding techniques.
Any distributed denial of service attack has to use some types
of flooding, otherwise it may not be considered a DDoS.
However, some attacks such as HTTP flooding merely employ
flooding techniques and do not normally try to exploit any
specific vulnerabilities as well.

III. RELATED WORK

The existing solutions for slow-read attack try to put a
threshold on connections such as limiting the number of
concurrent connections, connection lifetime, or TCP window
size [3], [6]. The disadvantage of these solutions is that they
can affect legitimate users, as well. Finding the right threshold
may also be very tricky. Another approach [7] tries to address
the slow-read attack by monitoring packet frequency. This
approach is essentially a network-based method which is not
tailored for this specific application-layer attack. As a result,
it may result in high false positive and negative rates.

One of the techniques to mitigate the slow-read attack is to
prevent a large number of connections from a single source IP
address to be in the busy state on the server [6]. The problem
of this approach is that the number of concurrent connections



from a single source IP address cannot be limited to a very
small number, because several connections may be required to
retrieve all the resources on a Web page. For example at the
time of writing this paper, a total number of 161 GET and
POST requests would be made by a client in order to retrieve
the www.amazon.ca homepage (without HTTP pipelining).
In versions prior to HTTP/1.1, 161 TCP connections were
established to fetch all those resources. Furthermore, some
legitimate users such as home Internet users, each with several
devices nowadays, share a public IP address. This further
impacts the number of legitimate connections from a single
IP address that needs to be supported by a Web server.

The other suggested mitigation mechanisms include block-
ing connections that advertise abnormally small window sizes,
disabling HTTP pipelining and persistent connections, and
limiting the entire connection time [3]. In order for an attacker
to launch a slow-read attack, the attacker needs to find a
fairly large resource on the target server and set the receive
window size just below that resource’s size. In order to further
evade detection, an attacker can randomly switch requesting
among some files with fairly large sizes. Therefore, dropping
connections merely based on small window sizes would not
be an effective countermeasure if the attacker requests a large
enough resource. Moreover, the attacker can send requests with
different random window sizes to evade a detection mechanism
detecting fixed small window sizes.

The other proposed mitigation technique is to disable
HTTP pipelining and persistent connections. This method
may mitigate the attack, but disabling those features would
noticeably reduce the network performance for legitimate
users. As a result, the impact of applying this technique
may not be tolerable. The problem of limiting the entire
connection time is that there may be legitimate users with
low bandwidth. Moreover, in the case of an SSL connection
which normally takes longer than a non-encrypted connection,
limiting the entire connection time may be tricky and might
prevent legitimate users to access the server.

H. Gonzalez et al. [4] discuss the impact of the application
layer denial of service attacks. They provide a classification of
application-layer attacks into six categories of request flood-
ing, asymmetric, hybrid, exploit-based, low-rate and slow-
rate. They test different attacks on different Web servers, and
conclude that modern Web servers are resilient to these types
of attacks. However, based on our experiments, Apache Web
server which is currently the mostly used Web server on the
Internet [8] is not resilient to the slow-read attack. Moreover,
they do not offer any new countermeasures for the attack.

E. Cambiaso et al. [9] give a classification of slow-
rate DoS attacks on Web applications. They categorize slow-
rate attacks as pending-request, long-response, multi-layer or
mixed attacks. They do not, however, provide any detection or
mitigation techniques for the attacks.

J. Park et al. present an analysis of the slow-read attack on
Apache Web server [10]. They discuss the relationship between
the server’s timeout, maximum number of connections, and the
total number of connections made with the server as to how
they may lead to a successful or unsuccessful slow-read attack.
They also discuss an effective way of launching a distributed
version of the attack, and discuss that a distributed slow-read

TABLE I. CURRENT SLOW-READ ATTACK COUNTERMEASURES

Solutions Disadvantages

Blocking connections with very small
window sizes

Not protecting against requests with big-
ger window sizes that are still below the
target file size, difficult to find the right
boundary

Disabling persistent connections and
HTTP pipelining

Reducing the network performance for
legitimate users

Limiting connection lifetime Preventing legitimate users with low
bandwidth, difficult to find the right
limit

Limiting the number of requests from a
single IP

Not protecting against distributed at-
tacks

Monitoring the average rate of packets
received by the server

Having high false negative for slow-read
and high false positive rates for flash
crowds

attack can be more challenging to mitigate. They, however, do
not propose any new solution to detect or mitigate the attack.

M. Aiello et al. [7] propose a solution for slow-rate attack
detection. Their method is based on analyzing the average rate
of packets received by the server over two periods of time.
This method is a network-level technique that deals with the
frequency of the data received by the Web server. Application-
layer attacks including the slow-read tend to evade those
techniques that are mostly suitable for volumetric, flooding
attacks. The slow-read application layer attack can evade this
detection technique, since it does not generally cause a traffic
surge. Benign surges in Web traffic such as flash crowds may
also be falsely detected as attacks by this technique.

There are also previous work on intrusion detection using
Random Forests [11]. Most of these approaches have used
the KDD ’99 intrusion detection dataset which is very old
for the purpose of the current work. The current work is
focused on slow-read denial of service attack, which did not
exist at the time of the KDD ’99 dataset. The current datasets
have been generated on the Cloud, since we aim to show the
feasibility of the Cloud as a potential denial of service zombie.
Moreover, the selected TCP attributes for the classification are
also different from those previously used, as our datasets are
tailored to this specific attack.

The idea of DDoS-as-a-Service has been already intro-
duced [12], [13]. M. Karami et al. show how DDoS-as-a-
Service works by briefly analyzing a Cloud service called
TwBooter. However, their analysis is limited to that specific
service, as opposed to our work which has employed Amazon
EC2 as the current dominant Cloud service provider [14]. J. J.
Santanna et al. discuss Booter services and how to find those
services on the Web. Compared to our work, this work does not
discuss exploiting the Cloud and is limited to existing Booter
services. Table I summarizes current detection/mitigation tech-
niques along with the disadvantages of each.

The difference between our work and previous work is
threefold. First, we launch an Application-layer DDoS from the
Cloud, thus showing the feasibility of initiating those attacks
from the Cloud. Second, we generate Cloud-based, attack-
specific datasets as opposed to using existing (old) datasets that
are not tailored for these specific attacks. Third, we propose
using random forests to detect the slow-read attack and show
how fine-tuning the classifier’s parameters can result in near



TABLE II. SLOW-READ ATTACK PARAMETERS

Parameter Name Parameter Description

N Number of HTTP requests sent by the attack

C Number of connections per second

W Window range in bytes

R Receive buffer’s read intervals in seconds

B Bytes to read from receive buffer in a single read operation

P Pipelining factor for HTTP requests

D Duration of the slow-read attack

optimal classification of the attack and benign traffic.

IV. SLOW-READ DENIAL OF SERVICE LAUNCHED FROM
THE CLOUD (CLOUDZOMBIE)

In this section, we discuss the implementation details of
the slow-read attack and the results showing how Cloud can
be exploited to launch such attacks with a minimum cost.
The target Web server runs on an IBM System x3650 M4
server powered by two 10-core Intel Xeon E5-2680 v2 2.80
GHz processors, 384 GB of memory, and 100 Mbps Internet
bandwidth. This powerful server runs Apache HTTP Server
2.4 on an Ubuntu Server 14.04 operating system. Table II
shows the parameters that can be used to launch the slow-read
attack. The number of HTTP requests (N) and the frequency
(C) are the two most important parameters. They specify the
volume and the rate of the attack. One of the key attributes
of a slow-read is to set the TCP (receive) window size to a
small value to force the server to send the responses slowly.
Parameter W specifies a range for the random window sizes
to be advertised for each request. The attacker can also fine
tune at which rate the response data from the server should be
read using parameters R and B in Table II. When supported by
both parties, the attacker can also use HTTP Pipelining to send
multiple requests without waiting for each response. Parameter
P in the table can be used to specify the number of times the
request can be repeated in a connection. Finally, parameter D
determines the duration of the attack.

A. Threat Model

We use Amazon Elastic Compute Cloud (EC2) to launch
the slow-read attack. On the EC2 platform, like other Infras-
tructure as a Service platforms, an attacker can easily get
access to a number of virtual machines without being required
to spend huge amount of money. Furthermore, the automatic
and easy registration process can help the attacker conceal his
real identity [1]. Many Cloud service providers also offer free
trial periods to users to use their services. Amazon AWS Free
Tier offers Micro instances at no charge for 12 months. Thus,
launching these attacks will have no cost for an attacker.

Figure 4 shows the slow-read DDoS threat model using
the Amazon EC2. In this threat model, attacker A does not
need to compromise victim machines and form a botnet to
launch the attack. Instead, A creates a virtual machine image
I and installs all the required attack tools on it. A can then
launch n virtual machines VMi based on I and attack the target
T. This is feasible partly because a slow-rate attack does not
need a tremendous amount of bots as opposed to volumetric
DDoS attacks. Furthermore, since the attack is not resource
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Fig. 4. Slow-read DDoS launched remotely from the Amazon Cloud. The
attacker launches a number of Amazon EC2 instances using a VM image
which contains the attack tool.

intensive, it can evade the Cloud misuse detection systems.
One distinctive feature of the Cloud is that each time a new
VM is launched, a new public IP address will be assigned to
it. This brings the opportunity for the attacker to evade DDoS
detection techniques that blacklist IP addresses.

As the figure shows, A possesses two sets of keys: secure
access keys and an authentication private key. Secure access
keys consist of an access key ID and a secret access key.
Access keys are used to sign Amazon Web Services (AWS)
API requests. This allows AWS to authenticate the requester
[15]. In order to authenticate users, Amazon EC2 uses public-
key cryptography. The authentication private key stored on the
attacker machine must be provided to EC2 in order to connect
to the virtual machine instances.

Slow-read requires neither high bandwidth nor high com-
puting power on the attacker side. This means that even the
least powerful EC2 virtual machines (Micro instances) can
be used to launch the attack. Figure 5 shows what happens
when a slow-read DoS attack is launched against the target
Web server with aforementioned configuration. We have used
a Micro instance on Amazon EC2 which has very limited
hardware power and network bandwidth; however it has been
able to knock down the powerful server after a few seconds
(see Service Available line in the figure). In order to confirm
the status of the target server, a probe connection automatically
probes the server in regular intervals. Moreover, the status
is manually checked using the Apache Module mod status
to make sure that the victim server is inaccessible for any
new connections. The server is considered to be down if no
response is received by the probe connection for five seconds.

Security of a system is determined by the weakest link in
the system. Although the target Web server was running on
a powerful machine, it was easily knocked down through its
weakest link; connection pool in this case. This is because
the attack exhausted the target server’s connection pool and
not the powerful computing and networking hardware. One of
the other reasons why the Web server in this attack scenario
was very easily knocked down is because of the underlying
architecture used to handle the incoming requests. In gen-



Seconds Closed Pending Connected Service Available
0 0 1 0 1000
1 0 39 148 1000
2 0 217 154 1000
3 0 393 166 1000
4 0 561 185 1000
5 0 735 200 1000
6 0 783 217 1000
7 0 752 248 1000
8 0 721 279 1000
9 0 687 313 1000

10 0 653 347 0
11 0 626 374 0
12 0 601 399 0
13 0 580 420 0
14 0 580 420 0
15 0 578 422 0
16 0 578 422 0
17 0 577 423 0
18 0 576 424 0
19 0 574 426 0
20 0 573 427 0
21 0 573 427 0
22 0 573 427 0
23 0 573 427 0
24 0 573 427 0
25 0 573 427 0
26 0 573 427 0
27 0 573 427 0
28 0 573 427 0
29 0 573 427 0
30 0 573 427 0
31 0 573 427 0
32 0 571 429 0
33 0 570 430 0
34 0 569 431 0
35 0 567 433 0
36 0 566 434 0
37 0 565 435 0
38 0 565 435 0
39 0 565 435 0
40 0 565 435 0
41 0 565 435 0
42 0 565 435 0
43 0 565 435 0
44 0 565 435 0
45 0 565 435 0
46 0 565 435 0
47 0 565 435 0
48 0 565 435 0
49 0 565 435 0
50 0 565 435 0
51 0 565 435 0
52 0 565 435 0
53 0 565 435 0
54 0 565 435 0
55 0 565 435 0
56 0 565 435 0
57 0 565 435 0
58 0 565 435 0
59 0 565 435 0
60 0 565 435 0
61 0 565 435 0
62 0 565 435 0
63 0 565 435 0
64 22 543 435 0
65 159 406 435 0
66 295 270 435 0
67 419 146 435 0
68 538 27 435 0
69 565 0 435 0
70 565 0 435 0
71 565 0 435 0
72 565 0 435 0
73 565 0 435 0
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Fig. 5. Slow-Read DoS attack launched from Amazon EC2. The target Web
server goes down after 14 seconds. Total number of connections = 1000,
Connections/second = 200.
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Fig. 6. A target Web server capable of handling 4,000 concurrent connections
going down by a slow-read attack launched from Amazon EC2. Total number
of connections = 10,000, Connections/second = 1000.

eral, modern Web servers are built on different architectures
including non thread-based, thread-based, event-based or a
combination of those. In the non thread-based model such as
Apache prefork, a separate process takes care of answering
each incoming request. This may be the most reliable model,
because requests are isolated from each other. However, this
uses a high amount of system resources and is not suitable for
handling numerous number of connections concurrently. In the
thread-based architecture model, a single thread is responsible
to handle each request as opposed to a separate process.

In this experiment, the number of simultaneous connections
that can be handled by the Apache Web server was limited to
the default value of 256. By increasing this number to 1,000
and repeating the same experiment, we can prevent the slow-
read DoS. This may be one of the simplest techniques to
mitigate the attack. Nonetheless, the attacker can also increase
the number of requests, and this will not cost much in terms of
bandwidth, because each request requires only a tiny amount
of bandwidth. In general, the attacker has less limitations in
this regard compared to those of the target machine. This is
mainly because the number of concurrent connections that can
be served by a Web server is always limited to some number l
and the attacker can almost always send more than l requests.

Figure 6 shows how a server capable of handling 4,000
concurrent connections can be knocked down by a slow-read
attack. In this attack, a total number of 10,000 connections

were sent out at the rate of 1,000 connections per second. The
receive window ranged randomly between 512 to 1024 bytes
and the response was read at the rate of 32 bytes per 5 seconds.

If the receive window size is w, the send buffer size is b,
and the requested file size is f, then the following requirement
has to be satisfied for a successful slow-read attack:

w < b < f (1)

V. CLOUDZOMBIE DETECTION

We perform experiments for slow-read attack in both DoS
and DDoS settings. In our approach, we use Random Forests
[16] to detect slow-read denial of service attacks at the des-
tination. Random forests is an ensemble, supervised machine
learning technique with excellent classification performance
[17]. The learning algorithm is based on building a large
number of random decision trees. The forest is the combination
of all the trees, and classification is done by voting; the class
that has the most votes among all the decision trees will
be assigned to the new object. This approach does not have
most of the drawbacks of the current solutions, since it is not
blocking, disabling, or limiting any functionalities at the server
as opposed to the existing solutions.

There are different places as to where a denial of service
attack can be detected. The attack can be detected at the
source, at the destination, in the intermediate networks or a
combination of those (hybrid) [18]. In this paper, we are inter-
ested in the destination-based approaches, as they are the most
practical among the four options. Network-based approaches
cannot be used to detect application-layer DDoS attacks such
as slow-read, since network devices (switches and routers) do
not have access to application layer data. The other detection
deployment location is at the source of the attack. There are
a number of source-based DDoS mitigation techniques such
as Ingress/Egress filtering, monitoring inbound and outbound
traffic and comparing to a normal flow, detecting bidirectional
packet flow imbalances, etc. [18]. Furthermore, besides the
technical limitations of each of these techniques, there is a big
concern in implementing the techniques in practice; the party
implementing a source-based DDoS detection technique may
not necessarily be the one benefiting from it. In other words, a
company needs to have source-based mitigation techniques in
place to protect victims residing on other companies’ networks.
This makes source-based DDoS mitigation techniques much
less practical compared to source-based approaches.

In our experiments, the attack and benign HTTP requests
are launched on Amazon EC2, and the training dataset is
created based on the generated TCP logs. Figure 7 shows the
simplified process of generating the datasets for the random
forests classifier. We have developed a Python program to
remotely launch the attack from outside the Amazon Cloud.
The program employs Amazon EC2 APIs to create and launch
the requested instances. The program then remotely calls the
attack script which is stored on the instance in order to run
the slow-read. The benign dataset is generated using a similar
process, but using a different program.

The tcpdump packet analyzer which is run on the target
server collects the raw (binary) TCP log for all the malicious
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Fig. 7. The simplified process of preparing training dataset for the random forests classifier.

and benign connections. This raw log is then converted into
a readable ASCII format. During the pre-processing, different
fields of each packet are shifted so that the resulting output
has an ordered list of fields for each packet. This creates
the initial dataset which is then labeled to identify attack
and benign packets. After filtering redundant records and
selecting appropriate attributes, the resulting dataset is fed
into the random forests classifier and the performance of the
classification is measured. The dataset consists of 12,357 TCP
attack and 36,069 TCP benign packets in the non-distributed
(DoS) experiment.

Each TCP packet captured during the experiments has 15
different fields, but not all of them are relevant attributes. A
relevant attribute is one that has correlation with the target
attribute (here, attack or benign) and also has predictive power.
For instance, the Destination port field has no predictive power,
because it is always 80 (HTTP default), or the Destination IP
is always the same in our experiments. Therefore, we have
only selected TCP header fields that are the most relevant in a
slow-read attack. These attributes are: source port, source IP,
flags, window size, and window scaling.

The simplest metric to measure the performance of a
machine learning algorithm is the prediction accuracy, namely
what percentage of the objects are correctly classified. Usually
the cross validation technique is used to get an unbiased
estimate of the test set. Cross validation partitions the dataset
into a number of subsets (k). Then each of the k subsets
is used for testing once while the remaining k − 1 subsets
are being used for training. The average of all the generated
models is calculated to estimate the statistical performance of
the algorithm. However, this type of validation is not needed to
estimate the performance of random forests, since the training
algorithm uses only 2/3 of the objects and the remaining 1/3
can be used for testing the error rate [16].

Entropy(D) = −
n∑

i=1

pi log2 pi (2)

In order for the random forests algorithm to split a tree
node, different splitting criteria can be used such as Infor-
mation Gain, Gain Ratio, Gini Index, etc. If Information
Gain is used, the entropy of all the attributes is calculated,
then the attribute with the minimum entropy is selected for
splitting. Formula 2 shows the Shannon entropy [19] of a
dataset D. The number of distinct classes is denoted by n,
and pi denotes the probability of a random record in the
dataset to belong to class Ci. This method is biased towards
the attributes with a large number of distinct values. Gain
Ratio is a variant of Information Gain and tries to reduce
the bias by taking into account the size and number of a
decision tree branches when selecting an attribute. The Gini
Index measures the heterogeneity of the dataset. It selects an
attribute so that the average Gini Index of the resulting subsets

decreases. This heuristic is not biased like Information Gain.
Based on a theoretical and empirical study [20] and the initial
experiments with different splitting criteria on our dataset, the
Gain Ratio criterion results in the highest accuracy and lowest
false positive and negative rates on average for our dataset.
As a result, we select this criterion for splitting the decision
trees within the random forests. We use RapidMiner Studio
Professional [21] to perform the modeling task.

The distributed attack dataset consists of a total of 234,004
attack and 247,161 benign TCP packets created by simultane-
ously launching 10 Micro instances on the Amazon EC2. The
non-distributed (DoS) version of the slow-read attack may not
be very effective, since like other DoS attacks, all the packets
are coming from a single IP source. Modern intrusion detection
systems should be able to detect such attack quite easily. A
distributed attack, however, is more challenging to detect, and
can be more effective. In order to initiate a slow-read Cloud-
based DDoS attack, our program uses Amazon EC2 APIs to
launch a number of EC2 instances in parallel from an EC2
virtual machine image. It then runs the slow-read attack script
on each of them. The image already stores the required attack
binaries and scripts.

VI. EXPERIMENTAL RESULTS AND DISCUSSION

We have generated both slow-read DoS and slow-read
DDoS datasets employing Amazon EC2 Cloud. For building
the random forests classifier, we have tried different number of
trees ranging from 2 to 128 on a logarithmic scale. Increasing
the number of trees in a random forests classifier generally
increases the classification performance. Nonetheless, the per-
formance gain grows asymptotically [22]. In other words, the
performance gain beyond some point is not worth the higher
computational cost anymore.

We have also repeated all the experiments with and without
pre-pruning decision trees in random forests. Pre-pruning may
result in generating smaller trees which reduces memory and
processing costs. However, these trees may not be grown
enough to provide a high classification performance. We have
also performed all the experiments using pruning process.
However, pruning did not affect the accuracy or error rates. In
the pruning technique, leaf nodes in a decision tree that do not
improve the discriminative power of the classifier are removed.
This reduces the complexity of the trees and also overfitting.
Pre-pruning is a type of pruning which is done before the tree
classifies the training set, in parallel to the tree creation. We try
to find out the best number of trees and whether pre-pruning
has a positive or negative impact on the performance of the
generated classifiers.

There are different metrics for measuring a binary classifi-
cation performance. Accuracy is the ratio of correct predictions
to the total number of records in the dataset. Area Under
the Curve (AUC) is the area under the Receiver Operating



Metric Accuracy False Negative Rate
No Pre-pruning 99.37% 1.90%
Pre-pruning 83.34% 50.10%
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Fig. 8. Comparison of the accuracy and false negative rate with and without
applying pre-pruning to detect Slow-Read DoS. No pre-pruning outperforms
pre-pruning.

Characteristic (ROC) curve. The ROC curve is a plot of the true
positive rate against false positive rate at different thresholds.
This plot visualizes the performance of a binary classifier. An
AUC of 0.5 basically represents a random classifier and an
AUC of 1.0 belongs to a perfect classifier.

Figure 8 shows the results of using the random forests
algorithm on the generated dataset for the slow-read DoS. The
figure shows the accuracy and false negative rate metrics with
and without applying tree pre-pruning. False positive rate is
not shown in this figure as it is 0% for both cases. As the
figure shows, higher (99.37% vs. 83.34%) accuracy is resulted
from the classifier when pre-pruning is not used. Moreover, a
much lower (1.90% vs. 50.10%) false negative rate is resulted
in this case. As shown in the figure, pre-pruning has prevented
the trees in the forest to grow enough to provide a better
classification performance. The high false negative rate shown
in the figure for pre-pruning shows that half of the attack
packets were not correctly classified.

Figure 9 shows the ratio of the AUC metric to the number
of the decision trees with and without using pre-pruning. As
the number of the trees increases, AUC increases as well.
In both cases, AUC converges when random forests is made
of 32 trees. This asymptotic growth means that there is no
performance gain if more than 32 trees are used in the random
forests classifier. Using more trees will only increase memory
and processing costs in this case. As the figure shows, for all
different numbers of trees tested, no pre-pruning outperforms
pruning. Moreover, when pre-pruning is used with only two
or four trees in the forest, AUC is 0.5. This means that the
classifiers have performed not better than a random classifier.

Based on the results obtained for the slow-read DoS attack
detection, we found that applying pre-pruning results in lower
accuracy and AUC, and higher error rates. The empirical re-
sults show that pre-pruning prevents most trees to grow enough
to provide an accurate prediction. We did similar experiments
on the distributed attack dataset to find out what can best detect
the slow-read DDoS. Figure 10 shows the accuracy and false
negative rate of the random forests classifier for the slow-read
DDoS dataset. Like the DoS dataset discussed earlier, higher
accuracy (99.60% vs. 88.89%) and much lower false negative
rate (0.64% vs. 10.80%) are resulted when no pre-pruning is
used.

# Trees No Pre-pruning Pre-pruning
2 0.983 0.5
4 0.986 0.5
8 0.992 0.793

16 0.995 0.801
32 0.996 0.954
64 0.996 0.954

128 0.996 0.954
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Fig. 9. Comparison of the AUC metric with and without pre-pruning
using different numbers of trees to detect Slow-Read DoS. No pre-pruning
outperforms pre-pruning, but both converge (at # Trees = 32) as the number
of trees in random forests increases.

Metric Accuracy False Negative Rate
No Pre-pruning 99.60% 0.64%
Pre-pruning 88.89% 10.80%
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Fig. 10. Comparison of the accuracy and false negative rate with and without
applying pre-pruning to detect Slow-Read DDoS. No pre-pruning outperforms
pre-pruning.

# Trees No Pre-pruning Pre-pruning
2 0.995 0.94
4 0.995 0.944
8 0.997 0.944

16 0.998 0.98
32 0.998 0.98
64 0.998 0.98

128 0.998 0.98
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Fig. 11. Comparison of the AUC metric with and without pre-pruning
using different numbers of trees to detect Slow-Read DDoS. No pre-pruning
outperforms pre-pruning, but both converge (at # Trees = 16) as the number
of trees in random forests increases.

Figure 11 shows the AUC to the number of trees ratio for
the distributed attack. As the number of trees increases, the
AUC increases, as well. The growth happens whether pre-
pruning is used or not. Nevertheless, AUC is higher with
no pre-pruning for all the different numbers of trees tested.
Generally, by increasing the number of trees, true positive rate
increases and false positive rate decreases. Consequently, AUC
increases asymptotically by increasing the number of trees in
the random forests. As shown in the figure, AUC converges
where 16 trees comprise the random forests.



We are not aware of any detection technique for the slow-
read attack that is quantitatively comparable with our proposed
technique. This is partly due to the fact that we have generated
our unique dataset on the Cloud and for the specific slow-read
attack. Moreover, since it is the first time machine learning is
used to detect this attack, no other results are available with
the same metrics such as classification accuracy.

Our approach does not have most of the drawbacks of
the existing solutions, since it is not blocking, disabling, or
limiting any functionalities at the server as opposed to the
current solutions. We have also tried other machine learning
algorithms such as K-NN to detect slow-read attack. However,
K-NN had an accuracy of about 50%, which is much lower
than the accuracy of the Random Forests algorithm.

VII. CONCLUSION

Cloud is becoming more prevalent and less expensive to
use. There are, however, many security threats to the Cloud
including denial of service. Denial of service attacks are one of
the most notorious attacks on the Internet. A slow-read attack
is a new type of application-layer denial of service attack that
sends complete HTTP requests, but reads the responses slowly
to exhaust the server resources such as the connection pool.
The slow-read attack is easier to launch and harder to detect as
opposed to volumetric attacks that require tremendous amount
of resources on the attacker side.

In this work, we look at the Cloud from a different
perspective (CloudZombie). We show how easily the least
powerful virtual machines on the Amazon EC2 Cloud can
make a powerful IBM System x server defunct within a few
seconds. We propose a novel solution based on random forests
classifier to detect such attacks. Our experiments show that
this approach offers a high classification accuracy and AUC
on the attack and benign traffic along with low false positive
and negative rates. High accuracy and low false positive and
negative rates show the performance of the random forests for
the datasets used in the experiments. On the other hand, high
AUC shows the high aggregated classification performance and
predictive power of the random forests to classify unseen data.
We further show the minimum number of trees required in the
random forests to have the highest performance while keeping
computing costs at the lowest possible.

There are two drawbacks in using the random forests
classifier. First, it is an opaque and not a transparent classifier.
As a result, it is hard to tell how the prediction is done. This is
not a technical limitation, though. Second, the random forests
classifier can be expensive to deploy using large number of
trees. The other limitation of our approach is that we build a
binary classifier which can classify attack and benign packets
for only a specific attack. Therefore, it is not capable of
detecting different types of denial of service attacks.
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